
Electrons - AVR Fuses HOWTO Guide http://electrons.psychogenic.com/modules/arms/art/14/AVRFusesH...

1 of 4 06/27/07 20:37

 ELECTRONS.PSYCHOGENIC.COM
NEWS RAVES & RANTS GAMES CONTACT US

HOME ACCOUNT PRIVATE MESSAGE

 Main Menu

Home

Latest News

Raves & Rants

Articles

Add Article

My Articles

Newest

Top Rated

Most Popular

Frozen Bubble

Flash Games

 Login

Username:

Password:

User Login
Secure Login
Lost Password?

Register now!

Electrons :: Articles :: AVR :: AVR Fuses HOWTO Guide AVRAVR Go

AVR Fuses HOWTO Guide

Description: Details the nature and function of AVR fuses and describes how to determine and program new values
for a chip.

1. AVR Fuses HOWTO Guide

AVR Fuses HOWTO Guide

For an AVR microcontroller, the closest thing to a config file is its set of fuses. Fuses are used to configure
important system parameters.

While you may completely ignore a number of the more esoteric options most of the time, you will undoubtedly
need access to a few of these settings (such as the clock source fuse bits, which allow you to specify the source
and/or speed of the chip clock) in the course of hacking AVRs.

You will need to know how to program these fuse bytes in order to get the most out of your microcontroller (or
get it working at all!) and this simple tutorial will get you started right.

Fuse Bits and Bytes

As a quick reminder (or a crash course, if all this is new to you): numbers are usually represented in decimal
notation (e.g. "13" is thirteen) but others representations are possible, such as in binary where thirteen is "1101"
or hexadecimal where the same value is represented as 0x0D. Any number below 256 can be represented using
only 8 binary digits (this is where "bits" come from, they are just binary digits), for instance "1111 1111" is equal
to 255 (in regular decimal notation). Each such group of 8 bits is called a byte.

Members of the AVR family can have one or more fuse bytes. How many, and what they tell the chip to do,
depends on the specific microcontroller (e.g. a ATMega8 has both high and low fuse bytes, for a total of 16
configuration bits, while an ATtiny12 has only eight fuse bits).

As a quick reference, here are a few PDFs which provide the list of low, high and extended fuse bytes for AVR
microcontrollers. Though some of the bits are common to multiple MCUs, the specific functions and settings to
use for each should be verified in the relevant datasheet.

How to read the datasheet

The datasheet for each microcontroller contains (excruciatingly?) detailed information on the fuse bits available
and their function, but often leaves a bit to be desired in terms of an overview of the actual process of setting
these fuses. Matters are made worse by the fact that, for AVR micros, having a "1" in a bit means it is
unprogrammed while having a "0" is considered to be programmed and that the documentation will often use
language such as "... clear bit 7 to enable blah blah" which can leave you wondering whether this means you
should set it to 0 or not.

To find the available fuses for your microcontroller, do a search in the relevant datasheet for "Memory
Programming", "LockBits" "Fuse low byte" or something similar.

Programming Fuse Bits

The process of programming fuse bits involves:

Reading the datasheet to discover the location and settings for the bits of interest,
Determining the byte value for the affected fuse byte(s),
Actually programming the fuses on the chip.

We'll go through an example of the process and covers each step.

Bits of Interest

The ATmega8 ships with safe default settings for its clock source and startup time, which specify that an internal
1 MHz RC oscillator is to be used. This ensures that you can get the chip working with minimal setup but lets
assume you want to take advantage of a faster/more stable/more useful clock through the use of an external
crystal.

By checking the Clock Sources section of the datasheet, you can see that the clocking options are set using 4
CKSEL bits that specify the type of clock source the chip will use, and the CKOPT bit (which tells the chip to pay
attention to our CKSEL bits and influences startup time).

The actual bits you use depend on the hardware you've got. Here we'll say we're using a 2MHz crystal. In this
case, we determine that we should set CKSEL3..0 (this notation, used in the datasheets, indicates CKSEL bits 3 to
0, starting at 3) to 1100 and we should also ensure the CKOPT bit is 1.

Now that we know which bits we wish to set we need to know where they fit in, in the grand fuse byte scheme of
things. To do this, have a look at the following tables, which indicate the position and function of each bit in the
low and high fuse bytes (for the ATmega8).

Fuse Low Byte

Bit
Number Name Description Default

7 BODLEVELBrown out detector trigger level 1 (unprogrammed)

6 BODEN Brown out detector enable 1 (unprogrammed, no BOD)

5 SUT1 Select start-up time 1 (unprogrammed)

4 SUT0 Select start-up time 0 (programmed)

3 CKSEL3 Select Clock source 0 (programmed)

2 CKSEL2 Select Clock source 0 (programmed)

1 CKSEL1 Select Clock source 0 (programmed)

0 CKSEL0 Select Clock source 1 (unprogrammed)

 News

Russia tries to

ban human DNA

expo...

(2007/5/30)

Russia has banned

the shipment of

medical

specimens abro...

Cookies In Your

Head (2007/2/7)

Current iris

scanning systems

require a person

to stand ...

Trans Goes

Straight To

Tummy

(2007/2/7)

Eating a diet

consisting largely

of fast food could

caus...

Folic Acid as

Cancer Prevention

(2006/6/12)

Folic acid

supplements may

prevent cancer

progression an...

Don't Bother

Touching That Dial

(2006/4/18)

Philips would like

to take advantage

of Multimedia

Home ...

Human

Lab-Grown Organ

Success

(2006/4/4)

The first human

recipients of

laboratory-grown

organs we...

Dogs beat CATs

at detecting

cancer (2006/1/7)

Dogs with three

weeks of training

can best the latest

CA...

Stem Cells

Medicate Brain

(2005/12/15)

Scientists have

managed to

protect and

regenerate the

pa...

NAC vs.

Alzheimer’s

(2005/12/15)

A study conducted

at the San

Francisco VA

Medical Center...

Buckyballs

Could Disrupt DNA

(2005/12/15)

A new study,

conducted at

Vanderbilt by

chemical

enginee...

PIC Programmers
Low cost PIC programmers and kits Many PIC

chips, kits, books & tools

www.electronics123.com

PC Pattern Generator
PCI, PXI, cPCI Board with 32 Bits Prog. Levels

-2V to +10V at 40 MS/s

www.spectrum-instrumentation.com

Electrons - AVR Fuses HOWTO Guide http://electrons.psychogenic.com/modules/arms/art/14/AVRFusesH...

2 of 4 06/27/07 20:37

Fuse High Byte

Bit
Number Name Description Default

7 RSTDISBL Select if PC6 is I/O pin or RESET pin 1 (unprogrammed PC6 is RESET-pin)

6 WDTON WDT always on 1 (unprogrammed, WDT enabled by
WDTCR)

5 SPIEN Enable Serial Program and Data Downloading 0 (programmed, SPI programming
enabled)

4 CKOPT Oscillator options 1 (unprogrammed)

3 EESAVE EEPROM memory is preserved through the
Chip Erase

1 (unprogrammed, EEPROM not
preserved)

2 BOOTSZ1 Select Boot Size 0 (programmed)

1 BOOTSZ0 Select Boot Size 0 (programmed)

0 BOOTRST Select Reset Vector 1 (unprogrammed)

As you can see, our CKSEL settings are to be set in bits 0 to 3 of the low fuse byte, while CKOPT is bit 4 of the
high fuse byte. Even though we only wish to affect the CKSEL and CKOPT bits, we must program the entire low
and high fuse bytes. We want to set:

Low fuse bits: XXXX 1100

High fuse bits:XXX1 XXXX

without disturbing the bits in the "X" positions.

Byte Values

Determining the byte values required for the low and high fuses first involves discovering the current values for
the "X" bits above. Your hardware programmer can allow you to do this.

If you are using uisp you'd use something like:

$ uisp -dprog=stk500 -dserial=/dev/ttyS0 -dspeed=115200 -dpart=atmega8 --rd_fuses

Fuse Low Byte = 0xE1

Fuse High Byte = 0x91

Calibration Byte = 0x00 -- Read Only

Lock Bits = 0xff

You can convert these hex values to binary (for use below) using any decent calculator program.

If you've been using avrdude, you can extract the high and low fuse bytes like so (adjusting the programmer,
device and port options to match your hardware and setup):

$ avrdude -c stk500 -p m8 -P /dev/ttyS0 -U hfuse:r:high.txt -U lfuse:r:low.txt

 avrdude: Device signature = 0x003d04

 avrdude: reading hfuse memory:

 Reading | ## | 100% 0.01s

 avrdude: writing output file "high.txt"

 avrdude: reading lfuse memory:

 Reading | ## | 100% 0.00s

 avrdude: writing output file "low.txt"

 avrdude done. Thank you.

Avrdude doesn't make getting to the fuse info as simple... the bytes are actually saved raw in the high.txt and
low.txt files. You can use a hex editor to look at the value of the byte in each file. If you are lucky enough to use
a Unix workstation, like Linux, then you can just run this one-liner for each file to view the binary representation
of the bytes:

$ od -d high.txt | head -1 | sed -e 's/0000000 *//' | \

 xargs -i perl -e '$str= unpack("B32", pack("N",{})); $str =~ s/.*([01]{4})([01]{4})$/$1 $2/; \

 print "$str\n";'

1101 1001

$ od -d low.txt | head -1 | sed -e 's/0000000 *//' | \

 xargs -i perl -e '$str= unpack("B32", pack("N",{})); $str =~ s/.*([01]{4})([01]{4})$/$1 $2/; \

 print "$str\n";'

1110 0001

Note that the Atmel documentation names the bits in order of significance, so from bit 7 to 0:

low fuse bits: 1110 0001

low fuse pos.: 7654 3210

So in our example, CKSEL3..0 is 0001 (a setting for the calibrated internal RC oscillator, according to the data
sheet). To determine the byte values we wish to have, we apply the bit "mask" developed above and overwrite
relevant bits of each fuse byte.

Low original bits: 1110 0001

Low fuse mask: XXXX 1100

Low new bits: 1110 1100

High original bits: 1101 1001

High fuse mask: XXX1 XXXX

High new bits: 1101 1001

Once that is done, we can convert the new bytes back to hexadecimal for use with the hardware programmer.

Note that, as the CKOPT bit was already unprogrammed (1) in this example, the high fuse byte has not changed
and doesn't need to be reprogrammed. The low fuse has changed, though, to a hex value of 0xECand must

Electrons - AVR Fuses HOWTO Guide http://electrons.psychogenic.com/modules/arms/art/14/AVRFusesH...

3 of 4 06/27/07 20:37

therefore be written to the microcontroller memory.

Lighting Fuses

Now that we have determined the new value for the low fuse byte, our work is done. Simply performing the
inverse operation using the programmer will write the new byte to the chip:

$ avrdude -c stk500 -p m8 -P /dev/ttyS0 -U lfuse:w:0xEC:m

As you can see, programming the chip is easy. The majority of the work involves determining which options you
want to set, how to set them and where the new bits actually go. And that means getting to know the relevant
Atmel datasheet.

Final things To Remember

The fuses aren't erased when the AVR memory is erased, so reprogramming the fuses everytime the device is
reprogrammed is not required. Since the fuses are not cleared by a memory erase, it can cause problems if
incorrect settings are selected.

It may be possible to disabled In-System Programming (through the SPIEN fuse) while performing in-system
programming. If you do this, you will no longer be able to program the chip in this manner (you need to use
parallel programming to change this setting, which may mean removing the chip from the circuit and using
another hardware programmer, such as the STK500).

It may also be possible to disable the RESET pin (RSTDISBL fuse). If this happens, the RESET pin must be pulled
very high (12V) to program the chip and the circuit must tolerate this.

Some fuses just can't be changed through ISP Programming. If fuses cannot be changed through ISP
Programming, Parallel Programming is required to alter the fuses.

The lock bits are fuses that can be used to lock down the chip, but this can lock you out as well!

You can use the -v switch to avrdude while reading the fuse bytes. The verbose output includes lots of neat info
concerning the chip and current settings. Here is the output for an ATmega162, which shows that this chip has
extended fuse (efuse) and lock byte, in addition to the low and high fuse bytes:

$ avrdude -v -c stk500 -p m162 -P /dev/ttyS1 -U hfuse:r:high.txt:r -U lfuse:r:low.txt:r

avrdude Version 4.4.0

 Using Port : /dev/ttyS1

 Using Programmer : stk500

 AVR Part : ATMEGA162

 Chip Erase delay : 9000 us

 PAGEL : P00

 BS2 : P00

 RESET disposition : dedicated

 RETRY pulse : SCK

 serial program mode : yes

 parallel program mode : yes

 Memory Detail :

 Page Polled

 Memory Type Paged Size Size #Pages MinW MaxW ReadBack

 ----------- ------ ------ ---- ------ ----- ----- ---------

 flash yes 16384 128 128 4500 4500 0xff 0xff

 eeprom no 512 0 0 9000 9000 0xff 0xff

 lfuse no 1 0 0 16000 16000 0x00 0x00

 hfuse no 1 0 0 16000 16000 0x00 0x00

 efuse no 1 0 0 16000 16000 0x00 0x00

 lock no 1 0 0 16000 16000 0x00 0x00

 signature no 3 0 0 0 0 0x00 0x00

 calibration no 1 0 0 0 0 0x00 0x00

 Programmer Type : STK500

 Description : Atmel STK500

 Hardware Version: 2

 Firmware Version: 1.14

 Vtarget : 5.1 V

 Varef : 5.1 V

 Oscillator : 3.686 MHz

 SCK period : 1.1 us

You are now ready to play with your AVR's fuses, just remember to double-check those values before performing
the write!

Enjoy.

Level: Article

Additional Article Data

Level: Article

Comments

NestedNested Oldest FirstOldest First Refresh

The comments are owned by the poster. We aren't responsible for their content.

Jump to section

AVRAVR Go

Electrons - AVR Fuses HOWTO Guide http://electrons.psychogenic.com/modules/arms/art/14/AVRFusesH...

4 of 4 06/27/07 20:37

© 2007 WebRing Inc.

AVR

<< Prev | Ring Hub | Join | Next >>

Search

All contents are Copyright (C) 2004-2005 Psychogenic Inc -- All rights reserved

