

Application Note Allan Evans
Fat16 Interface for MSP430 Dept. of Electrical and Computer Engineering

© Michigan State University 2004

Introduction

A sixteen bit file allocation table (FAT16) is a common method of allocating a memory device to hold
information in an organized manner. It is one of the ways many consumer devices such as digital
cameras, PDAs, and portable music devices organize their files. FAT16’s ease of use and low overhead
makes it an ideal solution for many applications.

This application note describes the implementation of a FAT16 interface for the Texas Instruments
MSP430, a low-power 16-bit microcontroller. This interface, combined with the MSP430 and some
basic memory device functions, can form the foundation for any device that needs to record and read
information.

FAT16 Standard

The FAT16 standard is a standard designed by Microsoft. The original standard used 12 bytes instead
of sixteen, and was created for organizing hard drives. Later, FAT16 was developed for larger hard
drives because of limitations in the 12 byte standard. Today, FAT32 also exists and these three
standards do not work with each other. Microsoft continues to maintain these standards. FAT16 now
also commonly found in portable memory devices such as camera’s that save information so it can be
read in Windows with no additional software.

Comparison with other technologies

Fat16 can work with devices up to 2 GB in size, while being easy to implement if the 8.3 standard is
used. FAT12 does not support drives that are found in current technologies, and FAT32 has a more
difficult implementation. Fat16 allows functionality with any memory device currently on the market
while minimizing the complexity of the interface.

The other standard beside FAT is NTFS. NTFS is a much more difficult to implement. FAT16 and all
FAT file systems are simplistic, and thus they are not secure. If security is a primary concern, NTFS is a
much better option. FAT16 is very easy to implement, but to maintain its simplicity, it sacrifices
features like security.

Overview of a FAT16 File System

Table 1 contains a relative layout of a FAT16 file system with only one partition as it appears in
memory.

Application Note Allan Evans
Fat16 Interface for MSP430 Dept. of Electrical and Computer Engineering

© Michigan State University 2004

Memory Device

Master Boot Record

FAT16 Boot Record

FAT Tables

Directory Table

DATA

Table 1: Overview of a simple FAT on a memory device

From table 1, it can be seen that the locations of everything absolutely rely on the information in the
previous block. Only the relative location of information can be ascertained without getting
information off of the device. Each FAT has different protocols governing what information these
various sections contain, and where the information is located in the section.

Table 1 is the generic structure of a FAT with a single partition. Windows XP leaves off the Master
Boot Record when it formats some of the portable memory devices available on the market. The
general structure still applies; it just starts with the FAT Boot Record instead of the Master Boot
Record.

FAT16 protocol dictates the rest, and various variables and the location of files etc. are all defined in
the various tables. What follows is a step by step look at each of the major components.

Master Boot Record

The Master Boot Record (MBR) is always located at the very beginning of the memory; sector 0. It is
the first set of code that the computer will read, and it does not contain very much information for a
slave type storage device. The main purpose of the master boot record is to boot an operation system
from it. This is why new formatting of external memory eliminates it altogether. The MBR is 512 bytes
long (one sector on most memory devices), and it contains the partition table. Table 2 is the
breakdown of the MBR and the hexadecimal offsets of each component.

Application Note Allan Evans
Fat16 Interface for MSP430 Dept. of Electrical and Computer Engineering

© Michigan State University 2004

Offset Description Size
000h Executable Code (Boots Computer) 446 Bytes
1BEh 1st Partition Entry 16 Bytes
1CEh 2nd Partition Entry 16 Bytes
1DEh 3rd Partition Entry 16 Bytes
1EEh 4th Partition Entry 16 Bytes
1FEh Executable Marker (55h AAh) 2 Bytes

Table 2: Layout of a Master Boot Record

The only entries that matter in developing a non-bootable memory interface are the partition tables.
In almost all such cases, using one partition is the best solution for good memory management. Table
2 can be used to find the information in the MBR that is needed to interface with Windows. All that
matters is the 1st Partition entry at 1BEh. The information in the entry can be found in table 3.

Offset Description Size
00h Current State of the Partition 1 Byte
01h Beginning of the Partition - Head 1 Byte
02h Beginning of the Partition – Cylinder/Sector 2 Bytes
04h Type of Partition 1 Bytes
05h End of Partition - Head 1 Bytes
06h End of the Partition – Cylinder/Sector 2 Bytes
08h # of Sectors between MBR and Partition 4 Bytes
0Ch # of Sectors in the Partition 4 Bytes

Table 3: Layout of a partition entry in the MBR

The only information needed from the entire Master Boot Record is the location of the FAT16 Boot
Record at the beginning of the first partition. Non-Disk drives do not have cylinders and heads. They
are composed entirely of sectors. The only entry table 3 that contains the information needed to find
the beginning of the partition is the Beginning of the Partition based on the sector.

Application Note Allan Evans
Fat16 Interface for MSP430 Dept. of Electrical and Computer Engineering

© Michigan State University 2004

FAT16 Boot Record

The Fat16 Boot Record is the information located at the beginning of every partition. In the case of a
windows XP formatted card, it happens to be located in sector 0. In cards formatted with an MBR,
the MBR specifies where the partition begins and the FAT16 Boot record is the first sector (512 Bytes) of
the partition. Table 4 diagrams its contents with the appropriate offsets.

Offset Description Size
00h Jump Code and NOP 1 Byte
03h OEM Name 8 Bytes
0Bh Bytes per sector 2 Bytes
0Dh Sectors per cluster 1 Bytes
0Eh Reserved Sectors 2 Bytes
10h # of copies of the FAT 1 Bytes
11h Maximum root directory entries 2 Bytes
13h # of Sectors in a partition smaller then 32MB 2 Bytes
15h Media descriptor 1 Bytes
16h Sectors per FAT 2 Bytes
18h Sectors per track 2 Bytes
1Ah # of heads 2 Bytes
1Ch # of hidden sectors in the partition 4 Bytes
20h # of sectors in the partition 4 Bytes
24h Logical drive number of the partition 2 Bytes
26h Extended signature (29h) 1 Bytes
27h Serial Number of Partition 4 Bytes
2Bh Volume name of the partition 11 Bytes
36h FAT Name (FAT 16) 8 Bytes
3eh Executable Codes 448 Byte
1FE Executable Marker (55h AAh) 2 Bytes

Table 4: Layout of the FAT16 Boot Record

Much of the information in the FAT boot record is important in the handling of the rest of the
information. The important entries involve size determination and location of the rest of the
information. Anything implementing a FAT16 just needs to remove this information from the FAT16
Boot Record before finding the location of the Directory Table.

Application Note Allan Evans
Fat16 Interface for MSP430 Dept. of Electrical and Computer Engineering

© Michigan State University 2004

Directory Table

It is slightly odd that to implement a successful FAT16 you read information from the Boot Record and
then skip the FAT tables and go straight to the directory table. The location of the directory table is
the start of the partition + the number of reserved sectors + number of Sectors per FAT * the number
of FATs. This is very easy to implement in software as long as the necessary variables were taken from
the MBR and the FAT16 Boot Record and stored in RAM. The directory table contains all the file
entries in the order they are entered. Each entry is 32 bytes long, and the directory table can contain
512 entries. The structure of the data file entries can be found in table 5.

Offset Description Size
00h Name of the File 8 Bytes
08h Extension of the File 3 Bytes
0Bh Attribute 1 Bytes
16h Time 2 Bytes
18h Date 2 Bytes
1Ah Start Cluster 2 Bytes
1Ch File Size 4 Bytes

Table 5: File entry structure in the directory table

Windows does not require the attribute, time, or date of the file to properly read and use it. The rest
of the entries need to be filled when the file is written and/or created. Once the file being written to is
determined, a search through file names finds a match. The start cluster can then be found, and then
the FAT tables need to be accessed to determine what cluster we need to read/write to.

FAT Table

The FAT table is the single most important element of the data management system. It contains the
location of all of the parts of every file and how they are connected. There are almost always
multiple copies of these tables because if they are lost, the data is very difficult to recover. To find the
location of a particular cluster of a particular file, a single table can be used. When editing files, every
FAT needs to be updated or Windows will have problems reading back the data.

The Fat table acts like a linked list of the sectors of a file. For example; File A starts in cluster 3, then
the data continues in 5, 9, and ends in cluster 15. The directory table would have a start cluster for
File A at 3. Then the entry in cluster three in the FAT table would have a 5 in it. This means that the
file continues in 5. If you went to the entry for cluster 5, it would have a 9 in it. This continues until
the last cluster in the chain which contains an FFh FFh. The FFh FFh signifies the end of a file.

Application Note Allan Evans
Fat16 Interface for MSP430 Dept. of Electrical and Computer Engineering

© Michigan State University 2004

When writing new information to a FAT it is important to know two things. One, data starts with
cluster number two. The first two clusters are used for the FAT16 Boot Record and for the Directory
table. Also, cluster two begins immediately after the Directory table, and every cluster follows in
order after this. Two, 00h 00h is the entry that signifies an open cluster, and all cluster entries in the
FAT table are 2 bytes long. When looking for the next open cluster, the FAT needs to be searched for
the 00h 00h entry.

Implementation

The FAT16 interface is implemented as simply as possible. It supports only one directory (the root),
only one partition, and assumes the memory device is as defragmented as possible. Due to memory
(RAM) limitations with the MSP430, a quick FAT16 that has complete functionality is very difficult to
implement. The interface is optimized for write speed, and for devices that are providing data
through windows. It sacrifices the ability to optimize memory utilization in order to maximize speed.

Required Functions

The following FAT16 interface assumes the user has written the underlying function to communicate
with the specific memory device. This implementation also assumes that the memory device is
divided into 512 bytes sectors. The sd_read_block() command reads the data from a specified sector
on the memory device. sd_write_block() writes a 512 byte buffer to the sector specified. With these
two functions, the entire FAT16 interface can be created.

FAT Initialization

The initialization is not as complex as it could be. FAT16 is assumed so various standards do not have
to sorted out and compensated for. The primary goal is to verify that FAT16 is being used. Determine
the existence (or lack thereof) of a Master Boot Record, and load all the values needed to perform
the rest of the FAT functionality.

The initialization begins by reading the very first sector on the memory device (sector 0). The OEM
name “FAT 16” is looked for in its correct memory location. If it is not found, the first sector contains
the Master Boot Record. If it is found then the first sector is the FAT16 Boot Record. If the first sector
is the master boot record, then the 1st partition table entry is accessed and the start location is read.
Otherwise, the start location for the partition is set as zero.

The initialization process then reads the FAT16 Boot Record at the head of the first partition.
The function will load most of the necessary values into RAM so later functions will have access to
them. The sectors per cluster, the number of FAT tables, the sectors per FAT, first FAT location, and
the number of reserved sectors are all taken. Then, the function uses some of the values to determine
the start locations of every FAT table. Lastly, the beginning of the directory table is calculated and
stored into memory.

The function is implemented by init_fat() and is specific to FAT16 devices. It loads the FAT16 Boot
Record, and determines and saves all the necessary variables for correct FAT implementation.

Application Note Allan Evans
Fat16 Interface for MSP430 Dept. of Electrical and Computer Engineering

© Michigan State University 2004

Open or Create File

The open file command takes a file name. It will then either open the file or create it and place it
into the directory structure. Opening a file is much different here then it is in windows. What opening
means is initializing a particular file for read or write purposes . In the process, a memory structure
with the information for the file will be created until the file is closed. Also, only one file can be
opened at a time under the current implementation.

The first sector of the directory table is read. The function then searches through this sector of the root
directory for the file. If the file has not been found yet, the next sector of the root directory is loaded.
The function will search the entire root directory in this manner until the file is either found, or needs
to be created.

If a name match occurs, some information from the file is loaded into memory. The file number,
which is the files location in the directory (e.g. the 5th file would have file number 4), the start cluster,
and the file size are taken. Then, the start sector (on the memory device itself) is determined and
committed to memory.

If the file was not found, the function creates it. It looks for the first open entry in the root directory,
and creates an entry with the name given and the file number of its location. The function sets a new
file flag and the size as 0. The start cluster and start sector will be set later.

Next, the function loads the very last sector of the first FAT table. The FAT is then cycled through
from back to the front until a cluster with information is found. The cluster is noted, and the cluster
immediately after that is set as the next open cluster. The open file does this to find the last filled
cluster so any write will not be fragmented, and nothing will be overwritten. If the file is new, this
cluster is set as the start cluster of the file and an FFh FFh is put into the FAT’s. This means the file has
no information and starts and ends at the write cluster.

Lastly, the function determines the sector where writing will begin on the memory device based on a
formula using the write cluster. This information is stored in RAM so we can update the FAT tables
after anything is written. This function is run with the open_file() command.

Write File

The write file takes a 512 byte buffer of data and the information for the file currently opened and
writes the data to the memory device. Real time write speed is essential for applications that need to
write more information then RAM can hold. This is particularly important when taking information
from the ADC, or through other inputs, and storing it in its raw form. For this purpose the
fast_write_file() was optimized.

The information passed into the function is just the information needed to be written. The function
then takes the data write location, and writes the information. It then increments the write location
and sets the ending sector for when we update the FAT. It also adds 512 to the size of the file. This
function is designed to be looped any number of times without having to re-initialize anything, and
without having to write or receive any information that is not data.

Application Note Allan Evans
Fat16 Interface for MSP430 Dept. of Electrical and Computer Engineering

© Michigan State University 2004

The function will overwrite anything on the card in the sector it is writing and that is why we looked
for the last used cluster when we open the file. That way, nothing can be overwritten, and the linear
write works perfectly. The other drawback to this form of write occurs on a fragmented memory
device. When fragmentation places information deep into the memory area, the only open space for
this write is after that last piece of data. This can cause horrible memory efficiency and so it is
recommended that a newly formatted card be used.

Read File

The read file takes a sector number of the file to read. Then, the start cluster in the FAT table is read,
and the list is followed through until the cluster in which the read will occur is found. The sector that
starts the cluster is loaded, and either incremented until the sector is reached or not (depending on the
specific sector and the number of sectors per cluster).

A buffer is then loaded with the information in that particular sector. This allows the MSP430 to use a
configuration file. The file can be of any format, but a .txt file is very easy to implement in this
manner. Using a simple parser, any user configuration can be done in Notepad (or anything else)
and then used to control the functioning of the device.

Close File

The close file function needs to update everything that was modified and could not be updated
because of speed concerns. The function is called close_file() and it uses the information in the file and
fat memory structures to update the FAT and the directory tables. If this function is not called, the
data will not be accessible by a computer running Windows.

The function goes to the start cluster of the file and then follows it through the FAT along the linked
list until it reaches the cluster where writing began. Then, the FAT tables are filled linearly (e.g. 7 to 8
to 9 to 10 etc.) Until we reach the ending cluster of our write. The last cluster in the sequence is filled
with FFh FFh signifying the end of the file.

The close file also updates the size of the file. This is very important because windows will be unable
to access data if the size information is not correct.

Updates and Changes

Note that the following are additions not yet implemented. These functions and enhancements to
current functionality may or may not be completed. Once finished, this document will be updated to
reflect the better FAT16 implementation.

The major issue with the current implementation is the reliance on all aspects of the functionality to
adhere to a defragmented memory device. The opening and closing of files are both designed with
the linear fast write in mind. This hampers the addition of better write functions. Due to write speed
concerns, these issues could not be circumvented.

Application Note Allan Evans
Fat16 Interface for MSP430 Dept. of Electrical and Computer Engineering

© Michigan State University 2004

Much more functionality is supported by FAT16. Likely future functions would allow the creation of
directories, overwriting sectors of functions, writing optimally for memory instead of speed, and
deleting files. Current functions would need to be altered to support these new functions, but that
should take very little. The last concern would be to implement more rigorous error checking.

Summary

FAT16 is a very good file system for small memory formats. It is ideal for microprocessor based devices
that need a format to provide data directly to the user via Windows. It is better then FAT12 for
device size allowance, and easier to implement then FAT32.

The FAT16 interface here is ideal for writing in real time to a memory device. It has some problems as
an active memory manager, but digital cameras, recorders, and sensors are ideally suited to its speed.
Further functionality can be developed to fit device specifics with little change to what exists. This
interface is best suited with SD, MMC, or USB memory interfaces.

Application Note Allan Evans
Fat16 Interface for MSP430 Dept. of Electrical and Computer Engineering

© Michigan State University 2004

Appendix A

#include <msp430x16x.h>
#include "main.h"
#include "sd.h"
#include "fat.h"
#include "util.h"

// initialize the card function... probably needs a lower level call?
int init_fat(sd_context_t *sdc, FAT16_t *FAT, u8 *sd_buffer)
{
 int i;

 // Hard-coded for now.
 FAT->Bytes_Sector = 512;

 sd_read_block (sdc, 0, sd_buffer); // read in the very first cluster
// sd_wait_notbusy (sdc);

 if (bytecmp (&sd_buffer[54], "FAT", 3) == 0)
 {
 FAT->P_Start = 0;
 }
 else
 {
 // find the start of the first partition w/ these 4 enties
 // set the start of the partition to the FAT info
 FAT->P_Start = from_LE_32(*((u32 *)(&sd_buffer[454])));
 }

 if (sd_read_block(sdc, FAT->P_Start, sd_buffer) == 0) // read in the partition block
information
 return 0;

// sd_wait_notbusy (sdc);

 FAT->Secs_Cluster = sd_buffer[13]; // set the number of sectors per cluster
 FAT->Num_Fats = sd_buffer[16]; // record the number of Fats
 FAT->Secs_Fat = from_LE_16(*((u16 *)(&sd_buffer[22]))); // sets the Sectors per FAT
 FAT->Res_Secs = from_LE_16(*((u16 *)(&sd_buffer[14]))); // Sets the number of reserved
Sectors

 FAT->Fat_Start[0] = FAT->P_Start + FAT->Res_Secs; // Set first FAT table location
 for (i=1; i<FAT->Num_Fats && i < MAX_FATS; i++) // loop to set all Fat start points
 {
 FAT->Fat_Start[i] = FAT->P_Start + FAT->Secs_Fat * i + FAT->Res_Secs;

Application Note Allan Evans
Fat16 Interface for MSP430 Dept. of Electrical and Computer Engineering

© Michigan State University 2004

 }

 FAT->Root_Start =
 FAT->P_Start + FAT->Res_Secs + FAT->Secs_Fat * FAT->Num_Fats;

 return 1;
}

/*

Funtion: open_file

Purpose:
 Opens or creates a file in the root directory on the card. Loads all necesarry
 information into a FILE struct so we can quickly use it to optimize our write and
 read functions.
*/

int open_file(sd_context_t *sdc, FILE_t *FILE, FAT16_t *FAT, u8 *sd_buffer, u8 *filename)
{
// unsigned char file_name[11];
 long int i = 0;
 int j = 0;
 int k = 0;
 int temp = 0;
 u8 quit = 0;
 u8 newfile = 0;

 //converts the input filename into array format loop could be backward********

 for (i=0; i<11; i++)
 FILE->File_Name[i] = ' ';

 i = 0;
 do
 {
 FILE->File_Name[i] = filename[i];
 i++;
 }
 while (filename[i] != '.' && i < 8);

 i++; //increment i to get past the period

 //set the extension

Application Note Allan Evans
Fat16 Interface for MSP430 Dept. of Electrical and Computer Engineering

© Michigan State University 2004

 FILE->File_Name[8] = filename[i];
 FILE->File_Name[9] = filename[i + 1];
 FILE->File_Name[10] = filename[i + 2];

 sd_read_block (sdc, FAT->Root_Start, sd_buffer); // read in the root directory
// sd_wait_notbusy (sdc);

// bytecpy (FILE->File_Name, file_name, 11);

 i = 0;
 //loop through all files to find if the file already exists
 do
 {
 temp = i * 32;

 //do this to see if we overan a cluster and need to increment to continue
 if(temp == 512)
 {
 sd_read_block (sdc, FAT->Root_Start + j, sd_buffer);
// sd_wait_notbusy (sdc);
 j++;
 i = 0;
 }

 //check to see if we have a name match
 if (bytecmp (FILE->File_Name, &sd_buffer[temp], 11) == 0)
 {
 /* We have a match, break loop and assign current file attributes */
 FILE->file_number = i + 16 * j; //state what file # it is (in the root directory)

 // figure out the start cluster of the file so we can mess with the FAT
 FILE->start_cluster = from_LE_16(*((u16 *)(&sd_buffer[temp + 26])));

 // set the starting sector for the file so we dont have to do the math later
 FILE->start_sector = (FILE->start_cluster - 2) * FAT->Secs_Cluster + FAT->Root_Start + 32;

 //load the current file size into this noise!
 FILE->file_size = from_LE_32(*((u32 *)(&sd_buffer[temp + 28])));

 //create a break so we can end this loop
 quit = 1;
// newfile = 1;
 }

Application Note Allan Evans
Fat16 Interface for MSP430 Dept. of Electrical and Computer Engineering

© Michigan State University 2004

 i++;
 }
 while (sd_buffer[temp] != 0x00 && sd_buffer[temp] != 0xeb && quit == 0);

 //set file number if it is a new file
 if(quit == 0)
 {
 newfile = 1;
 FILE->file_number = (i-1) + 16 * j; //state what file # it is (in the root directory)
 FILE->file_size = 0;
 }

 // Loop through to find the last used cluster and then increment 1
 //set the conditions for the loop
 quit = 0;
 i = FAT->Secs_Fat - 1;

 do
 {
 sd_read_block (sdc, FAT->Fat_Start[0] + i, sd_buffer); //read in the last block of fat- go
backward
// sd_wait_notbusy (sdc);

 for(temp = 511; temp >= 0 ; temp -=2) // cycle through all 2 byte combos
 {
 if((sd_buffer[temp] != 0 || sd_buffer[temp-1] != 0) && quit == 0) // check to see if its
full
 {
 FILE->Fat_OpenCluster = (i*256) + (temp + 1)/2; //set the open cluster for writing
 quit = 1; // prepare to quite

 // if the file is a new file, this writes FF to the start sector for the file,
 // so it exists.... and the Fat update in the close file will work!

 if(newfile == 1)
 {
 for(k=0; k < FAT->Num_Fats; k++)
 {
 *((u16 *)(&(sd_buffer[temp + 1]))) = to_LE_16 (0xFFFF);
 sd_write_block(sdc, FAT->Fat_Start[k] + i, sd_buffer);
 }
 }
 }
 }

Application Note Allan Evans
Fat16 Interface for MSP430 Dept. of Electrical and Computer Engineering

© Michigan State University 2004

 i--;
 }
 while (i >= 0 && quit == 0); // conditions to continue or break

 // set the first sector of the new file
 if(newfile == 1)
 {
 // figure out the start cluster of the file from the fat with the FAT
 FILE->start_cluster = FILE->Fat_OpenCluster;

 temp = FILE->file_number / 16;

 sd_read_block(sdc, FAT->Root_Start + temp, sd_buffer);
// sd_wait_notbusy(sdc);

 bytecpy (&sd_buffer[(FILE->file_number - (temp* 16))*32], FILE->File_Name, 11);

 *((u16 *)(&sd_buffer[(FILE->file_number - (temp* 16))*32 + 26])) =
 to_LE_16(FILE->start_cluster);

 sd_write_block(sdc, FAT->Root_Start + temp, sd_buffer);
 // set the starting sector for the file so we dont have to do the math later
 FILE->start_sector = (FILE->start_cluster - 2) * FAT->Secs_Cluster + FAT->Root_Start + 32;
 }

 FILE->Fat_OpenSec = (FILE->Fat_OpenCluster - 2) * FAT->Secs_Cluster + FAT->Root_Start +
32;
 FILE->end_sector = FILE->Fat_OpenSec;

 return 1;
}

/*

Funtion: fast_write_file

Purpose:
 Designed to write to a file linearly as fast as possible, This should be faster for a write then
 the ADC is to convert so we can write information to the card faster then we can read it in.
 This assumes only one file is open... all function currently assume that!
*/

int fast_write_file(sd_context_t *sdc, FILE_t *FILE, u8 *sd_buffer)
{

Application Note Allan Evans
Fat16 Interface for MSP430 Dept. of Electrical and Computer Engineering

© Michigan State University 2004

 //write the information to the cluster
 sd_write_block_async(sdc, FILE->end_sector, sd_buffer);

 //increment the end cluster by one
 FILE->end_sector++;
 FILE->file_size += 512;

 return 0;
}

/*

Funtion: close_file

Purpose:
 Designed to close out a file and update all of the FAT tables and the partition table
*/

int close_file(sd_context_t *sdc, FILE_t *FILE, FAT16_t *FAT, u8 *sd_buffer)
{

 int i = 0;
 int j;
 u32 next_cluster = FILE->start_cluster;
 u32 next_cluster_temp = FILE->start_cluster;
 u32 end_cluster = (FILE->end_sector - 32 - FAT->Root_Start)/(FAT->Secs_Cluster) + 2;
 u32 current_sector = 0;
 u32 current_pos = 0;
 u32 num_clusters;
 int temp = next_cluster / 256; // should round down right? *******

 //open the FAT and go to the first cluster of the file.... then follow it until we get to the write
start

 sd_read_block (sdc, FAT->Fat_Start[0] + temp, sd_buffer);
// sd_wait_notbusy (sdc);

 while(next_cluster != FILE->Fat_OpenCluster)
 {
 temp = next_cluster / 256; // should round down right? *******
 next_cluster_temp = next_cluster;

 if (temp * 256 == next_cluster)
 {
 sd_read_block (sdc, FAT->Fat_Start[0] + temp, sd_buffer);

Application Note Allan Evans
Fat16 Interface for MSP430 Dept. of Electrical and Computer Engineering

© Michigan State University 2004

// sd_wait_notbusy (sdc);
 }

 next_cluster =
 from_LE_16(*((u16 *)(&sd_buffer[(next_cluster_temp * 2)-(512 * temp)])));

 }

 //once we get to the write start, we need to fill in the FAT tables with everything until the
write end
 num_clusters = end_cluster - FILE->Fat_OpenCluster;
 current_sector = FAT->Fat_Start[0] + temp;
 current_pos = (next_cluster_temp * 2) - (512 * temp);

 for(i = 0 ; i <= num_clusters ; i++) // cycle through enties until done
 {

 next_cluster++;

 if(i != num_clusters)
 {
 // set the cluster to point to the next cluster
 *((u16 *)(&(sd_buffer[current_pos]))) = to_LE_16 (next_cluster);
 }
 else
 {
 // set the last cluster to FF

 *((u16 *)(&(sd_buffer[current_pos]))) = to_LE_16 (0xFFFF);

 //write to all FATs
 for(j = 0; j < FAT->Num_Fats; j++)
 {
 sd_write_block(sdc, current_sector + FAT->Secs_Fat * j, sd_buffer);
 }
 }

 //increment the position and check to see if we need to load the next buffer
 current_pos += 2;

 if(current_pos == 512)
 {
 //write to all FATs
 for(j = 0; j < FAT->Num_Fats; j++)
 {

Application Note Allan Evans
Fat16 Interface for MSP430 Dept. of Electrical and Computer Engineering

© Michigan State University 2004

 sd_write_block(sdc, current_sector + FAT->Secs_Fat * j, sd_buffer);
 }

 current_pos = 0;
 current_sector++;

 sd_read_block(sdc, current_sector, sd_buffer);
// sd_wait_notbusy (sdc);
 }

 }

//updates to the partition table

//read in the root directory block where the file is
temp = (FILE->file_number/16);
sd_read_block (sdc, FAT->Root_Start + temp, sd_buffer);
// sd_wait_notbusy(sdc);

//set the size of the file
*((u32 *)(&(sd_buffer[(FILE->file_number - temp * 16)*32 + 28]))) = to_LE_32 (FILE->file_size);

//write it back to the root table
sd_write_block(sdc, FAT->Root_Start + temp, sd_buffer);

return 1;
}

/*

Funtion: read_file

Purpose:
 Designed to read a single 512 location on a file....
*/

int read_file(sd_context_t *sdc, FILE_t *FILE, FAT16_t *FAT, u8 *sd_buffer , u16 read_start)
{

 int j;
 u16 read_cluster = read_start / FAT->Secs_Cluster;
 u32 next_cluster = FILE->start_cluster;
 u32 next_cluster_temp = FILE->start_cluster;

 int temp = next_cluster / 256; // should round down right? *******

Application Note Allan Evans
Fat16 Interface for MSP430 Dept. of Electrical and Computer Engineering

© Michigan State University 2004

 //open the FAT and go to the first cluster of the file.... then follow it until we get to the read
start

 sd_read_block (sdc, FAT->Fat_Start[0] + temp, sd_buffer);
// sd_wait_notbusy (sdc);

 for(j= 0; j < read_cluster; j++)
 {
 temp = next_cluster / 256; // should round down right? *******
 next_cluster_temp = next_cluster;

 if (temp * 256 == next_cluster)
 {
 sd_read_block (sdc, FAT->Fat_Start[0] + temp, sd_buffer);
// sd_wait_notbusy (sdc);
 }

 next_cluster =
 from_LE_16(*((u16 *)(&sd_buffer[(next_cluster_temp * 2)-(512 * temp)])));

 }

 u16 read_sector = (next_cluster-2) * FAT->Secs_Cluster + FAT->Root_Start + 32 + (read_start -
read_cluster*2);
 sd_read_block (sdc, read_sector, sd_buffer);
// sd_wait_notbusy (sdc);

return 1;
}

Application Note Allan Evans
Fat16 Interface for MSP430 Dept. of Electrical and Computer Engineering

© Michigan State University 2004

Appendix B

#ifndef FAT_H
#define FAT_H

#include "sd.h"

#define MAX_FATS 4

// This is the struct for the file system. We should use one more for the actual file itself.
typedef struct
{
 u8 Num_Fats; // Total Number of Fats
 u32 Fat_Start[MAX_FATS]; // Start Location of each fat here
 u32 P_Start; // this is the start of the partition block
 u8 Secs_Cluster; // This is the number of sectors per cluster
 int Bytes_Sector; // This is the number of bytes per cluster (defaut 512)
 u16 Secs_Fat; // The number of sectors per fat Table
 u32 Root_Start; // This is the start of the root directory
 u16 Res_Secs; // The number of reserved sectors
} FAT16_t;

typedef struct
{
 unsigned char File_Name[11]; // Name of the File
 u16 start_cluster; // Cluster in which the file begins
 u32 start_sector; // Sector on SD card where the file begins
 u32 Fat_OpenCluster; // cluster on SD card where the write begins
 u8 file_number; // This is the position in the RD of the file (starts at 0)
 u32 Fat_OpenSec; // This is one greater then the last occupied sector (for fast write)
 u16 end_sector; // sector in which write ends
 u32 file_size; // This is one greater then the last occupied sector (for fast write)

} FILE_t;

int init_fat(sd_context_t *sdc, FAT16_t *FAT, u8 *sd_buffer);
int open_file(sd_context_t *sdc, FILE_t *FILE, FAT16_t *FAT, u8 *sd_buffer, u8 *filename);
int fast_write_file(sd_context_t *sdc, FILE_t *FILE, u8 *sd_buffer);
int close_file(sd_context_t *sdc, FILE_t *FILE, FAT16_t *FAT, u8 *sd_buffer);
int read_file(sd_context_t *sdc, FILE_t *FILE, FAT16_t *FAT, u8 *sd_buffer, u16 read_start);
#endif

Application Note Allan Evans
Fat16 Interface for MSP430 Dept. of Electrical and Computer Engineering

© Michigan State University 2004

References

[1] Dobiash, Jack. FAT16 Structure Information, http://home.teleport.com/~brainy/fat16.htm

[2] Foust, F. Secure Digital Interface for the MSP430
 http://www.egr.msu.edu/classes/ece480/goodman/fall/group05/deliverables/index.html

