
Long Filename Specification http://home.teleport.com/~brainy/lfn.htm

1 of 6 12/1/08 02:48

Long Filename Specification
by vinDaci

fourth release
First Release: November 18th, 1996

Last Update: January 6th, 1998 (Document readability update)

Compatibility

Long filename (here on forth referred to as "LFN") design for Windows95 is designed to be 99%
compatible with the old DOS 8.3 format. The 1% discripency comes in when old DOS programs
can detect the presence of LFN (but unfortunately not the LFN itself), which in no way interferes
with regular program operations except for perhaps low-level disk utility programs (such as disk
error fixing programs, disk optimization programs, anti-virus program, etc.)

DOS 8.3 Filename Background

I trust that anyone who wish to know the details of LFN has at least a small knowledge in DOS 8.3
filename specification. In this document, however, I'll assume you know very little about the 8.3
filename specs, however. What you need to know in order to understand this documentation is that
8.3 filenames are stored in a place on the disk called the directory table. This place contains the list
of filenames and other information associated with each file, such as the file date, time, size,
attributes, etc. (Note: Contrary to some belief, the directory table is not the same as the FAT -- e-mail
me if you wish to know what FAT is.)

The file attributes, mentioned above, play some big roles in LFN. It is important to note that a file's
attributes are may consist of one or more of the following:

Archive

Read-Only

System

Hidden

Directory

Volume

Most programmers are aware of the Archive, Read-Only, System, and Hidden attrbiutes, but for
those of you who don't know, please allow me to explain what each of these attributes is/does:

The Archive attribute tells that a file has been backed up (though most programs just ignore
this).
The Read-Only attribute keeps a file from accidentally getting overwritten; note that any
program can unset this attribute should it know how to detect this attribute and unset it -- that's
why it is used just to keep a file from accidentally getting overwritten.
The System attribute tells that the file is used for some important operation so it should not be
messed with except by the program that created it; any file with this attribute cannot be seen
with the DIR command except with the /a or /as arguments in DOS 5 and above.
The Hidden attribute tells that a file should normally be hidden from the user's view. Any file
with this attribute cannot be seen with DIR command either, except with the /a or /ah
arguments in DOS 5 and above.

And the explanation of the other attributes (the really important ones):

Long Filename Specification http://home.teleport.com/~brainy/lfn.htm

2 of 6 12/1/08 02:48

The Directory attribute is used to tell that a file is not actually a file but a directory. This type
of file contains a pointer to a part of the disk that contains another directory table; this
directory table that's pointed to is the subdirectory of the directory that has the pointer. In
another words, when you "CD" to that file, you go into the directory table the file points to,
making it look as though you are "inside" that directory. In reality, you only switch the
directory tables.
The volume attribute too is used to tell that a file is not actually a file. This attribute is used to
indicate the volume label of the drive (the name of the disk). A file with this attribute can never
be displayed with the DIR command. Furthermore, there can be only one file with this attribute
on the entire disk, and this file must be in the root directory of the disk.
 The volume attribute has a funny story attached to it -- There not only exists a file with the
volume attribute, but a copy of the volume label is also located in the boot sector (the very
beginning of the disk that has weird code and disk info on it) as a readable text. But when you
view a directory with the DIR command, the one that actually gets displayed is the volume
attributed file's name, not the volume label in the boot sector. Furthermore, even though files
with volume attribute is hidden from the DIR command, programs, when retrieving filenames,
can retrieve volume labels. All these factors about volume attributes come into a big factor
when we look at Long Filenames.

As an addendum, it might be interesting to note that each 8.3 file entry is 32 bytes long but that not
all 32 bytes are used to store data -- some of them are plainly left as blank bytes. In Windows95
version of the directory table, however, all 32 bytes are used.

General Specification

Just like DOS 8.3 filenames, Windows95 LFNs are also stored on directory tables, side-by-side
with DOS 8.3 filenames. On top of that, to achieve compatibility with old DOS programs Microsoft
designed LFN in a way so it resembles the old DOS 8.3 format. Furthermore, an 8.3 format version
of LFN (tttttt~n.xxx) is also present next to each LFN entry for compatibility with non-LFN
supporting programs.

Organization

From a low-level point-of-view, a normal directory table that only contains 8.3 filenames look like
this:

...

8.3 entry

8.3 entry

8.3 entry

8.3 entry

If you look at a directory table that contains LFN entries, however, this is what you will see:

...

LFN entry 3

LFN entry 2

LFN entry 1

8.3 entry (tttttt~n.xxx)

Notice that Long Filenames can be pretty long, so LFN entries in a 8.3 directory structure can take

Long Filename Specification http://home.teleport.com/~brainy/lfn.htm

3 of 6 12/1/08 02:48

up several 8.3 directory entry spaces. This is why the above file entry has several LFN entries for a
single 8.3 file entry.

Despite taking up 8.3 filename spaces, Long Filenames do not show up with the DIR command or
with any other program, even the ones that do not recognize the LFN. How, then, do LFN entries
get hidden from DOS? The answer is quite simple: By giving LFN entries "Read-only, System,
Hidden, and Volume" attributes. (If you do not know details about file attributes, read the above text
about DOS 8.3 Filename Background.)

A special attention should be given to the fact that this combination of attributes -- Read-only,
System, Hidden, Volume -- is not possible to make under normal circumstances using common
utilities found in the market place (special disk-editing programs, such as Norton Disk Editor, is an
exception.)

This technique of setting Read-only, System, Hidden, Volume attributes works because most
programs ignore files with volume attributes altogether, and even if they don't, they won't display
any program that has system or hidden attributes set. And since the Read-only attribute is set,
programs won't write anything over it. However, you can view "parts" of the LFN entries if any
program is designed to show Volume attributed files.

Storage Organization

To understand the LFN storage organization within a directory table, it is important to understand the
8.3 storage organization. This is mainly due to the fact that LFN entries are stored similar to 8.3
filenames to avoid conflicts with DOS applications.

The format of the traditional DOS 8.3 is as follows:

Offset Length Value
0 8 bytes Name
8 3 bytes Extension

11 byte

 Attribute (00ARSHDV)
 0: unused bit
 A: archive bit,
 R: read-only bit
 S: system bit
 D: directory bit
 V: volume bit

22 word Time
24 word Date
26 word Cluster (desc. below)
28 dword File Size

Note: WORD = 2 bytes, DWORD = 4 bytes

Everything above you should know what they are except perhaps for the cluster. The cluster is a
value representing another part of the disk, normally used to tell where the beginning of a file is. In
case of a directory, it is the cluster that tells where the subdirectory's directory table starts.

You may not know this, but LFN specification not only added the capability of having longer
filenames, but it also improved the capability of 8.3 filenames as well. This new 8.3 filename
improvements are accomplished by using the unused directory table spaces (Remember how I told
you that 8.3 filenames take up 32 bytes but not all 32 bytes are used? Now it's all used up!) This
new format is as follows -- try comparing it with the traditional format shown above!:

Long Filename Specification http://home.teleport.com/~brainy/lfn.htm

4 of 6 12/1/08 02:48

Offset Length Value
0 8 bytes Name
8 3 bytes Extension
11 byte Attribute (00ARSHDV)

12 byte NT (Reserved for WindowsNT;
 always 0)

13 byte Created time; millisecond portion
14 word Created time; hour and minute
16 word Created date
18 word Last accessed date

20 word Extended Attribute
 (reserved for OS/2; always 0)

22 word Time
24 word Date
26 word Cluster
28 dword File Size

In any case, this new 8.3 filename format is the format used with the LFN. As for the LFN format
itself (seen previously) is stored "backwards", with the first entry toward the bottom and the last
entry at the top, right above the new 8.3 filename entry.

Each LFN entry is stored as follows:

Offset Length Value
0 byte Ordinal field (desc. below)
1 word Unicode character 1 (desc. below)
3 word Unicode character 2
5 word Unicode character 3
7 word Unicode character 4
9 word Unicode character 5
11 byte Attribute
12 byte Type (reserved; always 0)
13 byte Checksum (desc. below)
14 word Unicode character 6
16 word Unicode character 7
18 word Unicode character 8
20 word Unicode character 9
22 word Unicode character 10
24 word Unicode character 11
26 word Cluster (unused; always 0)
28 word Unicode character 12
30 word Unicode character 13

Throughout this entry, you see "unicode characters". Unicode characters are 2-byte long characters
(as opposed to ASCII characters that are 1-byte long each) that support not only traditional latin
alphabet characters and arabic numbers but they also support the languages of the rest of the world,

Long Filename Specification http://home.teleport.com/~brainy/lfn.htm

5 of 6 12/1/08 02:48

including the CJK trio (Chinese, Japanese, Korean), Arabic, Hebrew, etc. Plus you have some space
left over for more math and science symbols. Unicode characters are still going through revisions
(on their second revision as I am writing, I believe) but Windows95 has left spaces to more fully
support unicodes in the future. You can keep up with the Unicode development by visiting the
Unicode webpage at www.unicode.org. Note that, in the 2-byte unicode character, the first byte is
always the character and the second byte is always the blank, as opposed to having the first byte
blank and the second byte blank. There is a perfectly logical explanation for this but it's kind of long
to get into at the moment so e-mail me if you are curious. (If you have a computer dictionary, look
up "little endian" and it'll explain everything.) For our purposes, though, just treat every other word
as an ASCII character as long as the following byte is a blank character. Anyways, notice that, in
order to maintain the compatibility with older programs, the attribute byte and the cluster word had to
be kept. Because of this, each unicode character had to be scattered throughout the entry.

By now you probably noticed that there is no file information (size, date, etc.) stored in the LFN
entry. Any information about the file itself is stored in the 8.3 filename, located below all the LFN
entries (as mentioned before).

The checksum is created from the shortname data. The steps/equation used to calculate this
checksum is as follows:

Step
Task

1 Take the ASCII value of the first character. This is your first sum.
2 Rotate all the bits of the sum rightward by one bit.

3 Add the ASCII value of the next character with the value from above.
This is your next sum.

4 Repeat steps 2 through 3 until you are all through with the 11
characters in the 8.3 filename.

In C/C++, the above steps look like this:

for (sum = i = 0; i < 11; i++) {
 sum = (((sum & 1) << 7) | ((sum & 0xfe) >> 1)) + name[i];
}

This resulting checksum value is stored in each of the LFN entry to ensure that the short filename it
points to indeed is the currently 8.3 entry it should be pointing to.

Also, note that any file with a name that does not fill up the 8.3 spaces completely leaves a trace of
space characters (ASCII value 32) in the blank spaces. These blank spaces do go into the calculation
of the checksum and does not get left out of the calculation.

I'm sure you're dying to know what the ordinal field is. This byte of information tells the order of the
LFN entries (1st LFN entry, 2nd LFN entry, etc.) If it's out of order, something is wrong! How
Windows95 would deal with LFN when such a thing happen is a mystery to me.
 An example of how ordinal field work: The first LFN entry, located at the very bottom as we have
seen before, has an ordinal field value 1; the second entry (if any -- remember that a LFN doesn't
always have to be tens of characters long), located just before the first entry, has an ordinal field
value of 2; etc. As an added precaution, the last entry has a marking on the ordinal field that tells that
it is the last entry. This marking is done by setting the 6th bit of the ordinal field.

That is basically all there is to long filenames. But before we end this conversation (while we're on
the subject of LFN,) I think it would be interesting to note that, since any long filename can be up to
255 bytes long and each entry can hold up to 13 characters, there can only be up to 20 entries of
LFN per file. That means it only needs 5 bits (0th bit to 4th bit) of the ordinal field. And with the 6th

Long Filename Specification http://home.teleport.com/~brainy/lfn.htm

6 of 6 12/1/08 02:48

bit used to mark the last entry, two bits are left for open usage -- the 5th and the 7th bit. Whether or
not Microsoft is going to do anything with these bits -- or why Microsoft used the 6th bit to indicate
the last entry instead of 7th or 5th bit and limited the file length to 255 bits -- remains to be a mystery
only Microsoft will keep to itself.

Credit

Much the information in this documentation has been gathered from Norton Utilities for Windows95 user's manual.
Detailed researches were done using Norton Utilities Disk Edit. The checksum calculation was graciously donated by
Jacob Verhoeks to comp.os.msdos.programmer Newsgroup as a reply to my request. Apparently the file Mr.
Verhoeks used to get me the checksum code, vfat.txt, that comes with newer Linux operating systems have some
good information on Windows95 LFN. BTW, I just (like, right now) found out that checksum algorithm is also in
Ralf Brown's Interrupt List.

Copyright ©1996-1998 vinDaci

