
MPEG Audio Frame Header - The Code Project - Audio and Video http://www.codeproject.com/audio/MPEGAudioInfo.asp

1 of 11 08/09/07 03:23

4,384,350 members and growing! 6,748 now online. gerard_mp | My Settings | My Bookmarks | My Articles | Sign out

All Topics, MFC/C++ >> Audio and Video >> Audio

MPEG Audio Frame Header
By Konrad Windszus.

An article about the MPEG audio frame header.

C++ (VC7.1)
Windows
Win32, VS (VS.NET2003),
MFC
Dev
Posted : 15 Sep 2004
Updated : 12 Apr 2007
Views : 125,789

ANNOUNCEMENTS Search ArticlesArticles Go! Advanced SearchSitemap

 Print Broken Article? Bookmark Discuss Send to a friend 51 votes for this
article.

Popularity: 8.13. Rating: 4.76 out
of 5.

Monthly Competition

Home MFC/C++ C# ASP.NET VB.NET Architect SQL All Topics

Download demo project (binary and source, V2.2) - 225.4 KB

Download source (V2.2) - 21.9 KB

Contents

Introduction1.
MPEG Audio Frame

MPEG Audio Frame Header1.
2.

MPEG Audio Frame Header - The Code Project - Audio and Video http://www.codeproject.com/audio/MPEGAudioInfo.asp

2 of 11 08/09/07 03:23

CRC Checksum2.
VBR Headers

XING Header1.
VBRI Header2.

3.

Additional Tags3.
Using The Code4.
Links And Miscellaneous5.
History6.

1. Introduction

This article is about the structure of the MPEG audio frame header including the XING
and VBRI headers. The aim is to estimate the duration of the MPEG audio file as
exact and fast as possible. The article does not include any hints on how to
decode/encode the actual audio data. MPEG audio files exist in different layers. The
most common is the MPEG 1 Layer III (also known as MP3), as it has the most
sophisticated compression technology.

I know that there are other articles about the MPEG audio frame header (even on
CodeProject), but I will go into it a little bit deeper.

2. MPEG Audio Frame

An MPEG audio file consists out of frames. Each frame contains a header at its
beginning followed by the audio data. This audio data always contains a fixed
number of samples. There currently exists three layers of MPEG audio, which differ
in how the audio data is encoded in the frame, although they all have the same
header format. The frame itself consists of slots. In Layer I, a slot is always 4 byte
long, in all other the layers a slot is 1 byte long.

Additional to the layers there are also three versions of MPEG audio, which differ in
the sampling rate they can handle (see table 2.1.2). MPEG 1 (ISO/IEC 13818-3) and
MPEG 2 (ISO/IEC 11172-3) are ISO standards. MPEG 2.5 is an unofficial extension of
MPEG 2 to support even lower sampling rates. MPEG 2/2.5 is also known under the
abbreviation LSF, which stands for Lower Sampling Frequencies. Each version can
handle the three layers. If you want to know more about the technical details of an
MPEG audio file please have a look at the specifications. You can find them and many
other useful information about MPEG at www.MP3-Tech.org.

A file can be encoded either with a constant bitrate (CBR) or with a variable bitrate
(VBR), which means that each frame can have a different bitrate. Therefore, the
quality of those files is often higher than files encoded in constant a bitrate mode,
because they can use higher bitrates where the music needs it.

2.1. MPEG Audio Frame Header

The header at the beginning of each frame is 32 bits long and has the following
format. The bit 0 in the header is the most significant bit (MSB) of the complete
header. Note that the position is zero-based; position, length and example are all in
bit-format.

MPEG Audio Frame Header - The Code Project - Audio and Video http://www.codeproject.com/audio/MPEGAudioInfo.asp

3 of 11 08/09/07 03:23

2.1.1 MPEG Audio Frame Header

Position Length Meaning Example

0 11
Frame sync to find the header (all bits are always
set)

1111 1111
111

11 2

Audio version ID (see table 3.2 also)

00 - MPEG Version 2.5 (unofficial extension of MPEG
2)
01 - reserved
10 - MPEG Version 2 (ISO/IEC 13818-3)
11 - MPEG Version 1 (ISO/IEC 11172-3)

11

13 2

Layer index

00 - reserved
01 - Layer III
10 - Layer II
11 - Layer I

01

15 1

Protection bit

0 - protected by 16 bit CRC following header
1 - no CRC

1

16 4 Bitrate index (see table 2.1.3) 1001

20 2 Sampling rate index (see table 2.1.2) 11

22 1

Padding bit

If it is set, data is padded with with one slot
(important for frame size calculation)

0

23 1 Private bit (only informative) 1

24 2

Channel mode

00 - Stereo
01 - Joint Stereo (Stereo)
10 - Dual channel (Two mono channels)
11 - Single channel (Mono)

Note: Dual channel files are made of two
independent mono channels. Each one uses exactly
half the bitrate of the file. Most decoders output
them as stereo, but it might not always be the case.

01

26 2
Mode extension (Only used in Joint Stereo)

(see table 2.1.6)
00

28 1 Copyright bit (only informative) 1

29 1 Original bit (only informative) 1

30 2

Emphasis

00 - none
01 - 50/15 ms
10 - reserved
11 - CCIT J.17

The emphasis indication is here to tell the decoder
that the file must be de-emphasized, that means the
decoder must 're-equalize' the sound after a
Dolby-like noise suppression. It is rarely used.

00

The sampling rate specifies how many samples per second are recorded. Each MPEG
version can handle different sampling rates.

MPEG Audio Frame Header - The Code Project - Audio and Video http://www.codeproject.com/audio/MPEGAudioInfo.asp

4 of 11 08/09/07 03:23

2.1.2 MPEG Versions and Sampling Rates

Sampling Rate
Index

MPEG 1 MPEG 2 (LSF) MPEG 2.5 (LSF)

00 44100 Hz 22050 Hz 11025 Hz

01 48000 Hz 24000 Hz 12000 Hz

10 32000 Hz 16000 Hz 8000 Hz

11 reserved

The bitrates are always displayed in kilobits per second. Note that the prefix kilo
(abbreviated with the small 'k') doesn't mean 1024 but 1000 bits per second! The
bitrate index 1111 is reserved and should never be used. In the MPEG audio standard
there is a free format described. This free format means that the file is encoded with
a constant bitrate, which is not one of the predefined bitrates. Only very few
decoders can handle those files.

2.1.3 Bitrates (in kilobits per second)

Bitrate
Index

MPEG 1 MPEG 2, 2.5 (LSF)

Layer I Layer II Layer III Layer I
Layer II &

III

0000 free

0001 32 32 32 32 8

0010 64 48 40 48 16

0011 96 56 48 56 24

0100 128 64 56 64 32

0101 160 80 64 80 40

0110 192 96 80 96 48

0111 224 112 96 112 56

1000 256 128 112 128 64

1001 288 160 128 144 80

1010 320 192 160 160 96

1011 352 224 192 176 112

1100 384 256 224 192 128

1101 416 320 256 224 144

1110 448 384 320 256 160

1111 reserved

In MPEG 1 Layer II, there are only some combinations of bitrates and modes allowed.
In MPEG 2/2.5, there is no such restriction.

MPEG Audio Frame Header - The Code Project - Audio and Video http://www.codeproject.com/audio/MPEGAudioInfo.asp

5 of 11 08/09/07 03:23

2.1.4 Allowed bitrate and mode combinations

Bitrate Allowed modes

free all

32 single channel

48 single channel

56 single channel

64 all

80 single channel

96 all

112 all

128 all

160 all

192 all

224 stereo, intensity stereo, dual channel

256 stereo, intensity stereo, dual channel

320 stereo, intensity stereo, dual channel

384 stereo, intensity stereo, dual channel

For the calculation of the frame size, you need the number of samples per MPEG
audio frame. Therefore, you can use the following table:

2.1.5 Samples Per Frame

MPEG 1 MPEG 2 (LSF) MPEG 2.5 (LSF)

Layer I 384 384 384

Layer II 1152 1152 1152

Layer III 1152 576 576

Then you can calculate the frame size like this:

Because of rounding errors, the official formula to calculate the frame size is a little
bit different. According to the ISO standards, you have to calculate the frame size in
slots (see 2. MPEG Audio Format), then truncate this number to an integer, and after
that multiply it with the slot size. You can find the correct way of calculating the
frame size in the class CMPAHeader in my code.

You get the duration of the file in seconds by applying the following formula:

The method of getting the first frame header in the file and then calculating the
duration by the above formula works correctly only for CBR files.

The mode extension is used to join information that is of no use for the stereo effect,
thus reducing the needed bits. These bits are dynamically determined by an encoder
in the Joint Stereo mode, and Joint Stereo can be changed from one frame to
another, or even switched on or off. For all other channel modes, the mode extension
field is invalid.

The complete frequency range of MPEG audio files is divided into subbands. There are
32 subbands. For Layers I & II, the two bits in the header determine the frequency
range (bands) where the intensity stereo is applied. Within this frequency range, only
one channel is stored. All other bands contain information in two separate channels.
For Layer III, these two bits determine which type of joint stereo is used (intensity

Frame Size = ((Samples Per Frame / 8 * Bitrate) / Sampling Rate) + Padding Size

Duration = File Size / Bitrate * 8

MPEG Audio Frame Header - The Code Project - Audio and Video http://www.codeproject.com/audio/MPEGAudioInfo.asp

6 of 11 08/09/07 03:23

stereo and/or M/S stereo).

2.1.6 Mode Extension

Value Layer I & II
Layer III

M/S stereo Intensity stereo

00 bands 4 to 31 off off

01 bands 8 to 31 off on

10 bands 12 to 31 on off

11 bands 16 to 31 on on

2.2. Verifying CRC

If the protection bit in the header is not set, the frame contains a 16 bit CRC (Cyclic
Redundancy Checksum). This checksum directly follows the frame header and is a
big-endian WORD. To verify this checksum you have to calculate it for the frame and
compare the calculated CRC with the stored CRC. If they aren't equal probably a
transfer error has appeared. It is also helpful to check the CRC to verify that you
really found the beginning of a frame, because the sync bits do in same cases also
occur within the data section of a frame.

The CRC is calculated by applying the CRC-16 algorithm (with the generator polynom
0x8005) to a part of the frame. The following data is considered for the CRC: the last
two bytes of the header and a number of bits from the audio data which follows the
checksum after the header. The checksum itself must be skipped for CRC calculation.
Unfortunately there is no easy way to compute the number of frames which are
necessary for the checksum calculation in Layer II. Therefore I left it out in the code.
You would need other information apart from the header to calculate the necessary
bits. However it is possible to compute the number of protected bits in Layer I and
Layer III only with the information from the header.

For Layer III, you consider the complete side information for the CRC calculation. The
side information follows the header or the CRC in Layer III files. It contains
information about the general decoding of the frame, but doesn't contain the actual
encoded audio samples. The following table shows the size of the side information for
all Layer III files.

2.2.1 Layer III side information size (in bytes)

MPEG 1 MPEG 2/2.5 (LSF)

Stereo, Joint Stereo,
Dual Channel

32 17

Mono 17 9

For Layer I files, you must consider the mode extension (see table 2.1.6) from the
header. Then you can calculate the number of bits which are necessary for CRC
calculation by applying the following formula:

This can be read as two times the number of stereo subbands plus the number of
mono subbands and the result multiplied with 4. For simple mono frames, this equals
128, because the number of channels is one and the bound of intensity stereo is 32,
meaning that there is no intensity stereo. For stereo frames this is 256. For more
information have a look at the CRC code in the class CMPAFrame.

2.3. VBR Headers

Some files are encoded with variable bitrate mode (VBR). To estimate the duration of
those files, you have to know the average bitrate of the whole file. It often differs a
lot from the bitrate of the first frame, because the lowest bitrate available is used for
silence in music titles (especially at the beginning). To get this average bitrate, you
must go through all the frames in the file and calculate it, by summarizing the
bitrates of each frame and dividing it through the number of frames. Because this

4 * (number of channels * bound of intensity stereo +
 (32 - bound of intensity stereo));

MPEG Audio Frame Header - The Code Project - Audio and Video http://www.codeproject.com/audio/MPEGAudioInfo.asp

7 of 11 08/09/07 03:23

isn't a good practice (very slow), there exists additional VBR headers within the data
section of the first frame (after the frame header). They contain the total number of
frames in the file from which you can calculate the duration in seconds with the
following formula:

Additional to that, the VBR header often contains a table which is necessary to seek
positions within the file.

2.3.1 XING Header

This header is often (but unfortunately not always) added to files which are encoded
with variable bitrate mode. This header stands after the first MPEG audio header at a
specific position. The whole first frame which contains the XING header is a valid but
empty audio frame, so even decoders which don't consider this header can decode
the file. The XING header stands after the side information in Layer III files. So you
can calculate the beginning of a XING header relative to the beginning of the frame
by adding 4 bytes (for the MPEG audio header) to the values from the table 2.2.1.
The offset calculation doesn't consider the 16 bit CRC following the header and is
equal for all Layers, although only Layer III has a side information.

For reading out this header, you have to find the first MPEG audio header and then go
to this specific position within the frame. The XING header itself has the following
format. (Note that the position is zero-based; position, length and example are each
in byte-format.)

2.3.1.1 XING Header

Position Length Meaning Example

0 4
VBR header ID in 4 ASCII chars, either
'Xing' or 'Info', not NULL-terminated

'Xing'

4 4

Flags which indicate what fields are
present, flags are combined with a logical
OR. Field is mandatory.

0x0001 - Frames field is present
0x0002 - Bytes field is present
0x0004 - TOC field is present
0x0008 - Quality indicator field is present

0x0007
(means Frames,

Bytes & TOC
valid)

8 4
Number of Frames as Big-Endian DWORD
(optional)

7344

8 or 12 4
Number of Bytes in file as Big-Endian
DWORD (optional) 45000

8, 12 or 16 100
100 TOC entries for seeking as integral
BYTE (optional)

8, 12, 16,
108, 112 or
116

4
Quality indicator as Big-Endian DWORD
from 0 - best quality to 100 - worst
quality (optional)

0

According to this format, a XING header must only contain the ID and the flags. All
other fields are optional and depend on the flags which are set. Sometimes this
header is also added to CBR files. It then often has the ID 'Info' instead of 'Xing'.

There exists the LAME extension to this header, which is used by the common LAME
Encoder, but I didn't take it into account because it isn't necessary for duration
estimation. Nonetheless, here is the link for the documentation of the MP3 Info Tag.

2.3.2 VBRI Header

This header is only used by MPEG audio files encoded with the Fraunhofer Encoder as
far as I know. It is different from the XING header. You find it exactly 32 bytes after
the end of the first MPEG audio header in the file. (Note that the position is
zero-based; position, length and example are each in byte-format.)

Duration = Number of Frames * Samples Per Frame / Sampling Rate

MPEG Audio Frame Header - The Code Project - Audio and Video http://www.codeproject.com/audio/MPEGAudioInfo.asp

8 of 11 08/09/07 03:23

2.3.2.1 VBRI Header

Position Length Meaning Example

0 4
VBR header ID in 4 ASCII chars, always 'VBRI', not
NULL-terminated

'VBRI'

4 2 Version ID as Big-Endian WORD 1

6 2 Delay as Big-Endian float 7344

8 2 Quality indicator 75

10 4 Number of Bytes as Big-Endian DWORD 45000

14 4 Number of Frames as Big-Endian DWORD 7344

18 2
Number of entries within TOC table as Big-Endian
WORD 100

20 2 Scale factor of TOC table entries as Big-Endian DWORD 1

22 2
Size per table entry in bytes (max 4) as Big-Endian
WORD 2

24 2 Frames per table entry as Big-Endian WORD 845

26
TOC entries for seeking as Big-Endian integral. From
size per table entry and number of entries, you can
calculate the length of this field.

3. Additional Tags

Please consider that at the end or at the beginning of the file, there might be
additional data which is not part of the MPEG audio frames. This data is called a tag,
because it contains metadata about the file, like title, artist, track, years etc. You
must consider these tags, because only the MPEG audio data count for the duration
estimation.. At the end of a file there might be an ID3V1 tag, a Lyrics3 tag or a
Musicmatch tag. At the beginning or at the end of the file there might be an ID3V2
tag and/or an APE tag. You find information about ID3 and Lyrics3 tags at
www.id3.org. APE was originally developed for lossless compressed audio files in APE
(Monkey's Audio) format. But now this tag is also used for MPEG audio files. The
Musicmatch tag was used by older version of the Musicmatch Encoder. Unfortunately
there is very little information on the web about this tag, since it is a proprietary
format of Musicmatch.

4. Using The Code

I wrote some C++ classes to handle the MPEG audio frame header and the VBR
headers. The class CMPAFile represents the whole file, and provides methods for
accessing a specific frame (CMPAFrame class). This class instantiates a CMPAHeader
class which represents the MPEG audio frame header of the frame itself. All fields
from the header can be accessed via the class variables. Additionally, there is the
CVBRHeader class which is the generalization of CXINGHeader and of
CVBRIHeader. All tags are derived from the class CTag. These classes are
completely independent of any libraries like MFC or ATL. They only use the Win32
API. All classes will throw exceptions in case of errors. All exceptions are of the type
CMPAException. You can display information about the exception by using the
ShowError() method. All classes use CMPAStream for file-access. This class
includes a simple buffer.

Here is a code snippet which demonstrates how you could use these classes. Note
that you must at least include the header mpafile.h:

MPEG Audio Frame Header - The Code Project - Audio and Video http://www.codeproject.com/audio/MPEGAudioInfo.asp

9 of 11 08/09/07 03:23

For more information, have a look at the source of the demo project MPEG Audio
Info, which is a simple MFC Dialog Application, which uses the class CMPAFile for
getting information about a MPEG audio file. It also can perform a check of a whole
file for errors within the frame structure.

5. Links And Miscellaneous

Here, you can find the sources which I used for this article:

MPEG 1 Specification (ISO/IEC 13818-3).
MPEG 2 Specification (ISO/IEC 11172-3).
MPEG Audio Header specification from MP3-Tech.org.
XING Header SDK from Real Networks.
MP3 Info Tag.
VBRI Header SDK from Fraunhofer Institute.
MP3 sample files with different headers and tags.
ID3 & Lyrics tag.
APE tag.
Musimatch tag.

If you find any mistakes in the code or in the article, or have suggestions for
improvements, just post them to the forum below or write me an e-mail to
webmaster@wincd.de.

6. History

2004-09-15
Version 1.0 of MPEG Audio Info released.
First version of the article published.

2004-11-01
Version 2.0 of MPEG Audio Info released.

added possibility to get information about arbitrary frames (not just the
first one).
added checking of MPEG audio files.
better handling of faulty MPEG files (tolerance range +/-3 bytes to look
for the next frame).
padding is detected correctly.
improved buffer management.
fixed some other small issues.
added a readme file.

Article updated:
added information about mode extension field.
XING header offsets fixed (Mono and Stereo inverted).
frames and bytes in VBRI fixed (they were inverted).
position of quality indicator in VBRI header fixed.
corrected some typos.

2005-11-17
Version 2.1 of MPEG Audio Info released.

cleaned up class architecture.
better navigation through frames.
improved checking of files.
fixed original bit checking.
fixed frame size calculation for all layers (correct truncation).
fixed skipping of small frames in VBR files.
new cache management.
added CRC check.
added detection of ID3V1/V2, APE and Lyrics3 tags.

Article updated:
added information about CRC.

try {
 // open file and look for first header
 CMPAFile MPAFile(_T("C:\\test.mp3")) ;
 cout << MPAFile.GetLengthSec() << _T(" seconds");
}
catch(CMPAException& Exc)
{
 // show error message
 Exc.ShowError();
}

MPEG Audio Frame Header - The Code Project - Audio and Video http://www.codeproject.com/audio/MPEGAudioInfo.asp

10 of 11 08/09/07 03:23

fixed sampling rate table.
some minor enhancements.

2007-04-09
Version 2.2 of MPEG Audio Info released.

added Musicmatch-Tag detection
better exception handling
improved design of CMPAStream
added Drag&Drop functionality to dialog
fixed memory leaks
updated solution to Visual Studio 2005
better performance for finding frames

Article updated:
fixed broken links
added link with MPEG Audio Specifications
added link with informations about Musicmatch

About Konrad Windszus

Other popular Audio and Video
articles:

CAviCap and CFrameGrabber - wrappers for
AVICap Window
AVICap wrappers to ease real-time video processing and
single frame capture

Wrapper Library for Windows MIDI API
A small library encapsulating the Windows MIDI API

A C++ Wrapper for TWAIN
A C++ wrapper for TWAIN. Allows you to implement a
scanning interface.

Converting Wav file to MP3 or other format
using DirectShow
Simple class to convert stereo 44 kHz, 16 bit wav file to
another format, including MP3. The class shows how to
use DirectShow API for audio conversion.

[Top] Rate this Article for us! Poor Excellent Vote

 FAQ Message score threshold 3.03.0 Search comments Set Options

 View Message ViewMessage View Per page 2525

New Message Msgs 1 to 25 of 68 (Total: 68) (Refresh) First Prev Next

Subject Author Date

 help me out vikram panwar 11:53 24 Jul '07

 split the video file zakkas2483 5:41 9 Jul '07

 help me! cua 10:46 15 May '07

 Re: help me! vikram panwar 1:15 25 Jul '07

 It's useful victor.liu 8:53 29 Apr '07

 Thanks Konrad Windszus lakie1980 23:15 28 Mar '07

 Convert to VS 2005 [modified] Geobest 16:25 24 Jan '07

 easiest way to check if vbr? solace121 18:31 22 Jan '07

 Additional Tags Aniket Salunkhe 9:00 26 Sep '06

 Re: Additional Tags Konrad Windszus 14:17 15 Oct '06

 does it support read frame from memory? chinajuanbob 23:51 20 Sep '06

 Re: does it support read frame from memory? Konrad Windszus 14:22 15 Oct '06

Author of the shareware WinCD.

Click here to view Konrad Windszus's online profile.

MPEG Audio Frame Header - The Code Project - Audio and Video http://www.codeproject.com/audio/MPEGAudioInfo.asp

11 of 11 08/09/07 03:23

The Ultimate Toolbox • ASP Alliance • Developer Fusion • Developersdex • DevGuru • Programmers Heaven •
Planet Source Code • Tek-Tips Forums •

 Last Frame Truncation cwswpl 4:09 15 Sep '06

 Re: Last Frame Truncation Konrad Windszus 14:07 15 Oct '06

 Re: Last Frame Truncation cwswpl 17:47 15 Oct '06

 XING VBR kshatree 11:19 10 Apr '06

 Re: XING VBR Konrad Windszus 5:03 14 Apr '06

 What does the CRC16 algorithm do? kkchennai 0:08 1 Feb '06

 Re: What does the CRC16 algorithm do? Konrad Windszus 10:03 1 Feb '06

 Re: thanks for the link kkchennai 6:05 2 Feb '06

 Doubt in crc calculation for MPEG 1 layer 3 files kkchennai 1:37 30 Jan '06

 Re: Doubt in crc calculation for MPEG 1 layer 3 files Konrad Windszus 9:00 30 Jan '06

 Still the issue is not solved kkchennai 0:05 31 Jan '06

 Re: Still the issue is not solved Konrad Windszus 8:18 31 Jan '06

 Thank you kkchennai 22:41 31 Jan '06

Last Visit: 21:15 Wednesday 8th August, 2007 First Prev Next

 General comment News / Info Question Answer Joke / Game Admin message

Updated: 12 Apr 2007 Article content copyright Konrad Windszus, 2004
everything else Copyright © CodeProject, 1999-2007.

Web13 | Advertise on The Code Project | Privacy

