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PART I - PROGMEM BASICS 

The PROGMEM attribute is always a source of confusion for those beginning with AVR-
GCC. The PROGMEM attribute is a powerful one and holds the potential to save a lot of 
RAM, which is something of a limited commodity on many AVRs. Before you can use the 
PROGMEM attribute, you must first understand what it does and why it is useful. 

When strings are used in a program, they are commonly "hard-coded" into the firmware 
source code: 

Code:
LCD_puts("Hardcoded String"); 

While this seems the most logical way of using strings, it is *not* the most optimal. 
Common sense and intuition would dictate that the compiler would store the string in the 
program memory, and read it out byte-by-byte inside the LCD_puts routine. But this is not 
what happens. 

Because the LCD_puts routine (or other string routines) are designed to work with strings in 
RAM, the compiler is forced to read out the entire string constant from program memory 
into RAM, and then pass the string's RAM pointer to the routine (in this case LCD_puts). It 
certainly works but the RAM wastage adds up to significant amounts with each string. 
Why? 

Initial variable values and strings are copied out from program memory into RAM as part of 
the C startup routines, which execute before your main() function. Those startup routines 
give your globals their initial values, as well as ensure that all strings are inside RAM so 
they can be passed to your desired string handling routines. As more strings are added to 
your program, more data must be copied to RAM at startup and the more RAM is used up 
by holding static (unchanging) data. 

The solution to the problem is forcing strings to stay in program memory and only be read 
out as they are needed. This is not a simple task and requires string routines specifically 
designed to handle strings kept solely inside the program memory space. 

Using the "const" modifier on your string variables is a natural solution - but a wrong one. 
A "const" variable can only not be modified by the program code, but it does not explicitly 
prevent the variable value from being copied out to the AVRs RAM on startup. Some 



compilers implicitly do this for you, but GCC needs to be explicitly told that the contents 
must live in program memory for the entire duration of the program's execution. 

Entering pgmspace.h!

The AVR-LibC library contains a header file, avr/pgmspace.h, which contains all the 
interfacing information needed to allow you to specify data which is to be kept inside the 
AVR's flash memory. To use the pgmspace.h functions, you need to include the header at 
the start of your C file(s): 

Code:
#include <avr/pgmspace.h>

To force a string into program memory, we can now use the "PROGMEM" attribute 
modifier on our string constants. An example of a global string which is stored into program 
memory and not copied out at execution time is: 

Code:
char FlashString[] PROGMEM = "This is a string held completely in flash 
memory."; 

Although it is not an absolute requirement, we can remind ourselves - and possibly prevent 
bugs further down the track - that the string cannot be changed at all during execution by 
declaring it as a constant: 

Code:
const char FlashString[] PROGMEM = "This is a string held completely in 
flash memory."; 

Now that the PROGMEM string has a "const" modifier, we cannot try to modify it in our 
code. The pgmspace.h header also exposes a neat little macro, PSTR, which by some GCC 
magic allows you to create inline strings: 

Code:
LCD_puts(PSTR("Program Memory String")); 

This stops you from having to clutter your program up with hundreds of variables which 
hold one-time-used strings. The downside to using the PSTR macro rather than a 
PROGMEM modified string variable is that you can only use the PSTR string once. 

However, we now have a problem - now all your code doesn't work! What's wrong? 

The problem is that your string functions are expecting the string to be inside RAM. When 
you pass a string to a routine, you are in fact just passing a pointer to the start of the string in 



RAM. The string handling routine then just loads the bytes of the string one-by-one, starting 
from the pointer's location. But our PROGMEM strings are not in RAM, so the pointer to 
them is invalid. 

A pointer to a string stored in PROGMEM returns the address in flash memory at which 
the string is stored. It's still a valid pointer, it's just pointing to a different memory space. To 
use PROGMEM strings in our application, we need to make our string routines 
PROGMEM-pointer aware. 

Again, pgmspace.h comes to our rescue. It contains several functions and macros which 
deal with PROGMEM-based strings. First, you have all your standard string routines 
(memcpy, strncmp, etc.) with a "_P" postfix denoting that the function deals with the 
FLASH memory space. For example, to compare a RAM-based string with a PROGMEM-
based string, you would use the strncmp_P function: 

Code:
strncmp_P("RAM STRING", PSTR("FLASH STRING"));

For a full list of the avaliable string functions, check out the AVRLibC documentation 
which is installed with your WinAVR installation. 

But what if you have your own string function, like a USART-transmitting routine? Lets 
look at a typical example: 

Code:
void USART_TxString(const char *data) 
{ 

while (*data != '\0') 
USART_Tx(*data++); 

} 

This relies on the routine USART_Tx, which for the purposes of this example we will assume to be 
predefined as a function which transmits a single passed character through the AVR's USART. 
Now, how do we change our routine to use a PROGMEM string? 

pgmspace.h exposes a macro which is important for PROGMEM-aware routines; pgm_read_byte. 
This macro takes a PROGMEM pointer as its argument, and returns the string located at that pointer 
value. To mark that our new routine deals in PROGMEM strings, let's append a "_P" to it's name 
just like the other routines in pgmspace.h: 

Code:
void USART_TxString_P(const char *data) 
{ 

while (pgm_read_byte(*data) != 0x00) 
     USART_Tx(pgm_read_byte(*data++)); 

} 



Now we have our PROGMEM-aware routine, we can use PROGMEM-attributes strings: 

Code:
USART_TxString_P(PSTR("FLASH STRING")); 

Or via a global definition to allow for multiple uses of the same string:

Code:
const char TestFlashStr PROGMEM = "FLASH STRING"; 
USART_TxString_P(TestFlashStr); 

This should give you a basic idea of how to store strings and keep them in flash memory 
space. What follows is the second half of this tutorial, for more advanced uses of the 
PROGMEM attribute. 

PART II – More advanced uses of PROGMEM

Ok, so by now you should be able to create and use your own simple strings stored in 
program memory. But that's not the end of the PROGMEM road - there's still plenty more to 
learn! In this second tutorial section, I'll cover two slightly more advanced techniques using 
the PROGMEM attribute. The first part will lead on to the second, so please read both. 

Storing data arrays in program memory 

It's important to realize that all static data in your program can be kept in program memory 
without being read out into RAM. While strings are by far the most common reason for 
using the PROGMEM attribute, you can also store arrays too. 

This is especially the case when you are dealing with font arrays for a LCD, or the like. 
Consider the following (trimmed) code for an AVRButterfly LCD font table: 

Code:
static unsigned int LCD_SegTable[] PROGMEM = 
{ 

0xEAA8, // '*' 
0x2A80, // '+' 
0x4000, // ',' 
0x0A00, // '-' 
0x0A51, // '.' Degree sign 
0x4008, // '/' 

}



Because we've added the PROGMEM attribute, the table is now stored firmly in flash 
memory. The overall savings for a table this size is negligible, but in a practical application 
the data to be stored may be many times the size shown here - and without the PROGMEM 
attribute, all that will be copied into RAM. 

First thing to notice here is that the table data is of the type unsigned int. This means that 
our data is two bytes long (for the AVR), and so out prgm_read_byte macro won't suffice 
for this instance. 

Thankfully, another macro exists; pgm_read_word. A word for the AVR is two bytes long - 
the same size as an int. Because of this fact, we can now make use of it to read out our table 
data. If we wanted to grab the fifth element of the array, the following extract would 
complete this purpose: 

Code:
pgm_read_word(&LCD_SegTable[4]) 

Note that we are taking the address of the fourth element of LCD_SegTable, which is an 
address in flash and not RAM due to the table having the PROGMEM attribute. 

PROGMEM Pointers 

It's hard to remember that there is a layer of abstraction between flash memory access - 
unlike RAM variables we can't just reference the contents at will without macros to manage 
the separate memory space - macros such as prgm_read_byte. But when it all really starts 
confusing is when you have to deal with pointers to PROGMEM strings which are also held 
in PROGMEM. 

Why could this possibly be useful you ask? Well, i'll start as usual with a short example. 

Code:
char MenuItem1[] = "Menu Item 1"; 
char MenuItem2[] = "Menu Item 2"; 
char MenuItem3[] = "Menu Item 3"; 

char* MenuItemPointers[] = {MenuItem1, MenuItem2, MenuItem3};

Here we have three strings containing menu function names. We also have an array which 
points to each of these three items. Let's use our pretend function USART_TxString from 
part I of this tutorial. Say we want to print out the menu item corresponding with a number 
the user presses, which we'll assume is returned by an imaginary function named 
USART_GetNum. Our (pseudo)code might look like this: 

Code:
#include <avr/io.h> 

char MenuItem1[] = "Menu Item 1"; 



char MenuItem2[] = "Menu Item 2"; 
char MenuItem3[] = "Menu Item 3"; 

char* MenuItemPointers[] = {MenuItem1, MenuItem2, MenuItem3}; 

void main (void) 
{ 

while (1) // Eternal Loop 
{ 

char EnteredNum = USART_GetNum(); 

USART_TxString(MenuItemPointers[EnteredNum]); 
} 

}

Those confident with the basics of C will see no problems with this - it's all non-
PROGMEM data and so it all can be interacted with in the manner of which we are 
accustomed. But what happens if the menu item strings are placed in PROGMEM? 

Code:
#include <avr/io.h> 
#include <avr/pgmspace.h> 

const char MenuItem1[] PROGMEM = "Menu Item 1"; 
const char MenuItem2[] PROGMEM = "Menu Item 2"; 
const char MenuItem3[] PROGMEM = "Menu Item 3"; 

char* MenuItemPointers[] = {MenuItem1, MenuItem2, MenuItem3}; 

void main (void) 
{ 

while (1) // Eternal Loop 
{ 

char EnteredNum = USART_GetNum(); 

USART_TxString_P(MenuItemPointers[EnteredNum]); 
} 

}

Easy! We add the PROGMEM attribute to our strings and then substitute the RAM-aware 
USART_TxString routine with the PROGMEM-aware one we delt with in part I, 
USART_TxString_P. I've also added in the "const" modifier as explained in part I, since it's 
good practice. But what if we want to save a final part of RAM and store our pointer table in 
PROGMEM also? This is where it gets slightly more complicated. 

Let's try to modify our program to put the pointer array into PROGMEM and see if it works: 

Code:
#include <avr/io.h> 
#include <avr/pgmspace.h> 

const char MenuItem1[] PROGMEM = "Menu Item 1"; 



const char MenuItem2[] PROGMEM = "Menu Item 2"; 
const char MenuItem3[] PROGMEM = "Menu Item 3"; 

char* MenuItemPointers[] PROGMEM = {MenuItem1, MenuItem2, MenuItem3}; 

void main (void) 
{ 

while (1) // Eternal Loop 
{ 

char EnteredNum = USART_GetNum(); 

USART_TxString_P(MenuItemPointers[EnteredNum]); 
} 

}

Hmm, no luck. The reason is simple - although the pointer table contains valid pointers to 
strings in PROGMEM, now that it is also in PROGMEM we need to read it via the 
prgm_read_x macros. 

First, it's important to know how pointers in GCC are stored. 

Pointers in GCC are usually two bytes long - 16 bits. A 16-bit pointer is the smallest sized 
integer capable of holding the address of any byte within 64kb of memory. Because of this, 
our "uint8_t*" typed pointer table's elements are all 16-bits long. The data the pointer is 
addressing is an unsigned character of 8 bits, but the pointer itself is 16 bits wide. 

Ok, so now we know our pointer size. How can we read our 16-bit pointer out of 
PROGMEM? With the pgm_read_word macro of course! 

Code:
#include <avr/io.h> 
#include <avr/pgmspace.h> 

const char MenuItem1[] PROGMEM = "Menu Item 1"; 
const char MenuItem2[] PROGMEM = "Menu Item 2"; 
const char MenuItem3[] PROGMEM = "Menu Item 3"; 

char* MenuItemPointers[] PROGMEM = {MenuItem1, MenuItem2, MenuItem3}; 

void main (void) 
{ 

while (1) // Eternal Loop 
{ 

char EnteredNum = USART_GetNum(); 

USART_TxString_P(pgm_read_word(&MenuItemPointers[EnteredNum])); 
} 

}

Almost there! GCC will probably give you warnings with code like this, but will most likely 
generate the correct code. The problem is the typecast; pgm_read_word is returning a word-



sized value while USART_TxString_P is expecting (if you look back at the parameters for 
the function in part I) a "char" pointer. While the sizes of the two data types are the same 
(remember, the pointer is 16-bits!) to the compiler it looks like we are trying to do the code 
equivalent of shoving a square peg in a round hole. 

To instruct the compiler that we really do want to use that 16-bit return value of 
pgm_read_word as a pointer to a const char in flash memory, we need to typecast it to a 
pointer in the form of char*. Our final program will now look like this: 

Code:
#include <avr/io.h> 
#include <avr/pgmspace.h> 

const char MenuItem1[] PROGMEM = "Menu Item 1"; 
const char MenuItem2[] PROGMEM = "Menu Item 2"; 
const char MenuItem3[] PROGMEM = "Menu Item 3"; 

char* MenuItemPointers[] PROGMEM = {MenuItem1, MenuItem2, MenuItem3}; 

void main (void) 
{ 

while (1) // Eternal Loop 
{ 

char EnteredNum = USART_GetNum(); 

USART_TxString_P((char*)pgm_read_word(&MenuItemPointers[EnteredNum])); 
} 

} 

And so ends the second part of this tutorial. Feedback and corrections welcome! 
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